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 In this study the authors have examines various machine learning algorithms 
that could be used in IDS for making secure IoT and Smart Cities. The study 
examines various deep learning architectures of supervised, unsupervised, and 
semi-supervised learning methods to improve security and resource usage. 
Federated learning, edge computing, explainable AI, adversarial machine 
learning defense, and transfer learning are also explored for smart farming and 
IoT challenges. Machine learning has the potential to improve security and 
agricultural sustainability, but it must be researched and developed. The 
objective of this research is to explore and analyze the effectiveness of 
machine learning algorithms in enhancing Intrusion Detection Systems (IDS) 
for securing IoT environments and smart cities. 
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1. INTRODUCTION  

A new urban planning paradigm aims to create "smart cities" that leverage cutting-edge ICT to 
enhance city inhabitants' lives. IoT, which permits real-time data collecting, sharing, and analysis via 
networked systems and devices, is crucial to this transition [1]. IDC estimates a global smart city 
investment of $158 billion by 2022 [2]. Internet-connected smart cities improve resource management, 
public services, and city life. According to research, various cities worldwide are benefiting from Internet 
of Things applications in energy distribution, rubbish disposal, and traffic management [3]. 

Smart cities rely heavily on networked systems and IoT devices, making network security 
crucial. The enormous quantity and variety of linked devices increases the cyberattack surface. Gartner 
predicts that by 2025, there will be 75 billion linked devices, necessitating more advanced security [4]. 
Smart cities need network security to safeguard sensitive data, service availability and integrity, and 
citizens' privacy. Insufficient security can cause data breaches, service outages, and financial losses [5]. 
The 2016 Mirai botnet attack leveraged Internet of Things devices to exploit network security weaknesses 
and disrupt networks [6]. Protecting smart city networks requires intrusion detection systems (IDS). 
Intrusion detection systems (IDS) monitor unusual or harmful activity to defend networks from 
cyberattacks. Intrusion detection systems (IDS) include two main types: anomaly-based detection, which 
looks for unusual events, and signature-based detection, which matches incoming data to known hostile 
behaviour patterns [7]. Further research states that signature-based intrusion detection systems are good 
at recognizing existing hazards, whereas anomaly-based systems are better at finding new threats [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Some smart city authors have emphasized intrusion detection systems. According to a research 
study, intrusion detection systems (IDS) are crucial cybersecurity solutions for urban IoT network safety 
and functioning [8]. Another research emphasizes the relevance of intrusion detection systems (IDS) in 
preventing invasions by alerting users to potential dangers and offering remedies [9]. These systems are 
necessary to preserve smart city infrastructures' integrity and reliability. Figure 1 shows a simple IDS 
system working. 

 

 

 

 

 

Figure 1: Working of Intrusion Detection System [9] 

Research Contribution:  

• Review on machine learning algorithms for intrusion detection systems (IDS) targeting IoT and 
smart city security. Section 2, describe how machine learning algorithms enhance IDS threat 
detection in smart cities by reviewing several research. 

• Examine critically the existing key studies. Section 3, critically assess significant research' 
techniques and conclusions on IDS efficacy in smart cities. 

• Discuss strategies to enhance IDS. The literature study in Section 3 discuss existing IDS difficulties 
and possible solutions, notably using machine learning. 

• Contribute to ongoing discussions on protecting smart city networks. It is added to the discussion on 
smart city security in the face of growing cyber threats by synthesising the examined material. 

• Ensure efficient and safe operation of smart city networks despite evolving cyber threats. Section 4 
will emphasise the need of strong IDS and provide practical ideas for future research and practice to 
keep smart city networks secure and functioning. 

The rest of the sections of this article are as follows: Section 2 presents relevant literature findings from the 
field. Section 3 reviews the literature to solve objectives. Section 4 concludes the article with a summary of 
key points and suggestions. 

2. RELATED WORK 

This section discusses the work done in the field of machine learning-based Intrusion Detection 
Systems (IDS) for IoT and smart city security. 

Research [10] categorized intrusion detection system (IDS) machine learning approaches as 
supervised, unsupervised, and hybrid. As they noted, supervised learning methods like Decision Trees and 
Support Vector Machines (SVM) are best at recognizing patterns of earlier attacks but less so at detecting 
new ones. The study showed that unsupervised learning can detect zero-day risks, but it also had significant 
false positive rates. This study provides a basic overview of existing techniques, but it does not evaluate 
particular algorithms in IoT scenarios. 

Focusing on CNNs and RNNs, another research examined how IDS may benefit from deep learning 
[11]. Deep learning models outperformed machine learning methods in detection accuracy and data 
management. Although deep learning models have various IoT applications, the study found that training 
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them demands many computer resources. The complex approaches it investigates make this study valuable 
even if it does not address deployment concerns. 

A study [12] examined IoT IDS using machine learning for anomaly detection. PCA and k-means 
clustering were used to find unusual activities. The study showed that these methods might detect unusual 
tendencies that may imply an attack. The high rate of false positives might generate alarm fatigue. Although 
restricted, this study's focus on unsupervised techniques is a strength since they reveal new hazards.Another 
study [13] examined Random Forests, Naive Bayes, and Support Vector Machines for intrusion detection 
systems. These methods were evaluated for computational efficiency, false positive rate, and detection 
accuracy. The study indicated that Random Forests balanced performance and accuracy well. The study's 
comparison results are beneficial, but deep learning and its potential in modern IDS applications remain 
understudied. 

Research also [14] examined how machine learning might enhance IoT security. A combined 
strategy of supervised and unsupervised learning increased detection rates. Hybrid techniques reduced false 
positives and improved threat identification for existing and emerging threats. This study shows that 
combining approaches may be useful, but additional testing in other IoT situations might improve it.Another 
researcher [15] developed a neural network-based intrusion detection system (IDS) to regulate metropolitan 
IoT device traffic patterns. Although expanding the approach to larger networks was challenging, their neural 
network model detected intrusions with high accuracy. Scalability is still an issue, but this research's focus 
on smart cities is its strength. 

A study [16] released a semi-supervised learning-based adaptive IDS for IoT. Their system adapts 
to diverse attacks by learning from new data. This strategy progressively boosted detection rates while 
reducing false positives. Its approach adapts nicely to IoT situations, one of its strengths. However, data 
collection and model updates may be resource-intensive.Research also [17] examined how IoT IDS uses 
ensemble learning. Adding more classifiers boosted detection rates and made it more robust to attacks. 
Ensemble techniques may increase system robustness and false positives, according to studies. This technique 
has promise, but it requires many training data and is computationally expensive.Research [18] identified IoT 
network abnormalities using Autoencoders and other deep-learning methods. Their solution effectively 
discovered outliers, demonstrating deep learning's potential in complex IoT data management. According to 
the study, deep learning models demand many computer resources to train and deploy; thus, they may not be 
suitable for all Internet of Things devices. 

Another study [19] recommended lightweight intrusion detection methods for low-resource IoT 
devices. A simple neural network model was presented to balance detection accuracy and resource utilization. 
The study focused on preserving security without exhausting device resources and showed promising results. 
Despite having lower detection accuracy than more sophisticated models, this research is useful since it 
realistically manages resource constraints.A study [20] developed a deep learning-based IDS for smart cities. 
They employed a deep belief network to find traffic outliers. The technology was accurate and adaptable to 
diverse network traffic. The study revealed some possible benefits, but it also noted that it needed a lot of 
training data and computing resources, which may limit its utility. This study's focus on smart city settings 
provides useful insights into urban network security. 

Another researcher [21] examined different machine-learning approaches for IoT intrusion detection 
systems (IDS). In numerous research, they discussed the pros and cons of SVMs, DTs, and k-means 
clustering. Since no algorithm did well across the board, the study shows the need for context-specific 
algorithms. This research provides useful comparative insights, but it also suggests that hybrid methods may 
provide the best long-term outcomes.One author [22] used machine learning and stream processing to detect 
intrusions in real-time. Their technique enabled quick intrusion detection and response, securing IoT 
networks. Despite its success, the research showed the challenges of real-time processing of enormous data 
volumes. Real-time capabilities are a major benefit of this technique, although scalability remains a challenge. 

Machine learning for Internet of things intrusion detection systems was proposed by another 
researcher [23]. Integrating many detection methods within its design provides complete intrusion detection. 
The study found higher detection rates and fewer false positives, which is promising. Its broad approach 
makes the research strong, even if it does not address actual implementation concerns.Research [24] examined 
smart home IDS using support vector machines and k-means clustering. By considering smart home device 
traffic patterns, they created a system that correctly recognized intruders. Research shows that machine 
learning may enhance home IoT network security. Its focus on an IoT application makes this research strong, 
even if it does not examine transferability. Table 1 shows a few more important past studies critically: 
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Table 1: Critical Analysis of Literature 

Year Ref. Aim of Paper & Key 
Methods Key Results Limitations 

2024 [26] 
Investigate the application 

of edge computing in IoT IDS 
using edge computing and ML. 

Utilized edge 
computing to enhance 

real-time IDS performance 
in IoT 

Reduced data 
transmission and 

processing latency 

Limited scalability due 
to edge device constraints 

2024 [27] 

Study the use of blockchain 
technology for IoT IDS using 

blockchain and distributed 
ledger. 

Utilized blockchain for 
secure and tamper-

resistant logging in IoT 
IDS 

Enhanced data 
integrity and immutability 

Increased computational 
overhead due to blockchain 

operations 

2024 [28] 

Investigate the role of 
reinforcement learning in IoT 

IDS using reinforcement 
learning. 

Utilized reinforcement 
learning for adaptive and 
self-learning IDS in IoT 

Improved detection 
accuracy over time 

through learning from 
feedback 

Requires significant 
computational resources for 

learning and adaptation 

2024 [29] 

Explore the use of anomaly-
based techniques for IoT IDS 

using anomaly detection 
methods. 

Leveraged anomaly-
based techniques for 

detecting unusual 
behaviors in IoT networks 

Effectively identified 
previously unseen threats. 

higher false positive 
rates compared to signature-

based approaches 

2020 [25] 
A lightweight IDS for IoT 

devices using feature extraction 
and machine learning 

Lightweight IDS 
suitable for resource 

constrained IoT 
devices 

Achieved high 
detection accuracy with 

minimal resource 
consumption 

sacrifices detection 
accuracy for resource 

optimization 

2.1 Research Gap 
The past research lack in various aspects. First and foremost, smart cities need scalable intrusion 

detection systems to handle huge volumes of heterogeneous data from IoT devices. It is also studied neural 
networks for smart city applications; however, they did not address scalability in larger networks and different 
situations. As, deep learning models' high computational requirements make resource-constrained IoT 
devices struggle. Second, large false positive rates are a key challenge for anomaly-based detection systems. 
Aso review discovered this constraint, which may create alarm fatigue and reduce IDS efficiency. False 
positives must be reduced while detection rates remain high. Thirdly, most present research lacks real-world 
support. Research employs theoretical and simulated settings to give insights, but they cannot fully reflect 
real-world IoT networks. Practical deployment issues like learning and adapting need more study. This review 
paper examines machine learning approaches in IoT intrusion detection systems (IDS) and smart city network 
security to solve these gaps. This research combines and analyzes prior studies to find excellent methods and 
ways to improve them. 
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3. REVIEW OF MACHINE LEARNING ALGORITHMS IN IDS FOR IOT AND SMART 

CITIES  

This section provides various studies to form a review of Machine Learning Algorithms utilized in IDS for IoT and 
Smart Cities.  

Figure 2 shows the structure of this Rivew performed. 

Figure 2: Process Flow Diagram 

3.1 Supervised Learning Algorithms 
There are several methods of supervised learning algorithms as performed and discussed by various 

researchers. Decision Trees, a staple of intrusion detection system (IDS) investigations, secure the IoT and 
smart cities. Decision Trees are supervised learning methods that recognize attack patterns [30]. The strategy 
is simple to comprehend and evaluate, giving security analysts insight into IDS decision-making. A 
comparative research [31] found decision trees beneficial in intrusion detection. Overfitting may lead 
Decision Trees to function differently in different circumstances, according to the research. 

Support Vector Machines (SVMs) are famous for data classification. Another research [32] 
evaluated SVMs in intrusion detection systems and noted their computational efficiency and accuracy. The 
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advantage of SVMs is their capacity to create optimal decision boundaries, which increase generalization. A 
study [33] investigated SVMs for Internet of Things security to detect risks and reduce false positives. 
However, kernel settings may affect SVM performance, so tweak them carefully. 

Figure 3: Architecture Design 
 
Neural networks are now a powerful intrusion detection [34] method due to their pattern-spotting 

abilities. Research p tested a neural network-based IDS. When tuned to urban IoT device traffic patterns, it 
detected intrusions more accurately. Due to their variety and flexibility, neural networks can identify small 
dangers. However, another study [35] highlighted that neural networks are resource-intensive, highlighting 
data and processing issues. Despite this drawback, neural networks may increase Smart City and IoT IDS 
performance. 

Random Forests are useful for intrusion detection investigations because of their ensemble learning. 
In their ensemble learning research, Research [36] showed how Random Forests may increase detection and 
system resilience. This method may improve generality and reduce overfitting over particular decision trees. 
In training and inference, Random Forests provide a significant computational challenge. Another research 
[37] presents lightweight intrusion detection methods based on Random Forests' high accuracy-to-resource 
consumption ratio. Random Forests is a great intrusion detection system (IDS) for IoT and smart city security 
despite its drawbacks. 

3.2 Unsupervised Learning Algorithms 
Machine learning uses unsupervised learning algorithms to find patterns in unlabeled data without 

human interaction. Unsupervised learning finds insights, correlations, and outliers using raw, unstructured 
data, whereas supervised learning trains algorithms using labelled samples. As academics have noted, it 
includes many methods. 

K-means clustering aggregates data by similarity to reveal dataset grouping trends. It is basic 
unsupervised learning. Research [38] showed how IoT intrusion detection systems (IDS) using K-means 
clustering can identify unusual activity that may indicate an assault. It shows that the algorithm can detect 
suspicious IoT network activities. Clustering is hampered by high-dimensional data and identifying the 
optimal K clusters.  

Researchers also study how Smart Cities may utilize K-means clustering to find network 
abnormalities [39]. Their primary point was how successfully the system detected questionable network 
activities and enabled proactive protection. Despite its strengths, K-means clustering may not detect complex 
and dynamic threats; hence, other methodologies are required for intrusion detection. 

Researchers also examined K-means clustering for industrial IoT anomaly detection [40]. Their 
research revealed that the system might identify unexpected industrial actions to increase operational security. 
However, academics are still working to make K-means clustering work in the complex and ever-changing 
IoT ecosystem. 

Another method is Anomaly detection technologies are essential for detecting new threats and zero-
day attacks. Research showed real-time IoT intrusion detection using machine learning and stream processing 
[41]. Their research shows that anomaly detection quickly detects and reduces security vulnerabilities. Due 
to high false positive rates, anomaly detection algorithms must be improved to save operating costs. 

Another study [42] reviewed an all-encompassing intrusion detection system that employs many 
anomaly detection methods to defend the Internet of Things. Their study showed that combining detection 
methods improved threat detection rates and reduced false positives. Anomaly detection technologies 
function well, but scalability is a concern for big IoT setups. 

A study also [44] examined anomaly detection in car IoT settings for traffic monitoring and security. 
By detecting suspicious behaviour, anomaly detection enhanced road safety and network resilience. 
Identifying legitimate irregularities from malicious attacks is tough in real-world deployment circumstances. 

PCA is a fundamental dimensionality reduction method that extracts essential properties from high-
dimensional data. Author [45] introduced a lightweight IDS for IoT devices that use PCA for feature 
extraction to reduce computational overhead. The system architecture is shown in Figure 3. They found that 
principal component analysis (PCA) simplifies data processing in intrusion detection systems. In complex 
networks, PCA may experience data loss and decreased discrimination. 
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Another researcher [46] examined smart city network anomalies using PCA. The algorithm's 
capacity to extract key properties from enormous network data speeds up threat detection and response. 
Finding the balance between dimensionality reduction and information retention and understanding principal 
component analysis (PCA) feature interpretability needs further investigation. 

A study also examined how PCA may detect patient monitoring system abnormalities in healthcare 
IoT contexts [47]. Their study showed that principal component analysis (PCA) may detect unusual 
physiological patterns, which may help diagnose health issues early. Finding the right balance between 
computer efficiency and detection accuracy is crucial in real-time healthcare applications. 

3.3 Semi-supervised Learning Algorithms 
Semi-supervised learning algorithms provide a new paradigm by combining supervised and 

unsupervised learning. Semi-supervised learning combines both supervised and unsupervised algorithms to 
predict [48]. These algorithms excel when unlabeled data is abundant, but labelled data is scarce or expensive. 
Using labelled and unlabeled data, semi-supervised learning techniques train models more cheaply and 
efficiently than supervised methods. 

Self-training, a semi-supervised learning strategy, lets a model accurately categorize unlabeled data 
points to contribute to its training set after initial training on a small labelled dataset. Researchers [48] 
introduced a semi-supervised learning-based adaptive IDS for the Internet of Things (IoT) by showing how 
self-training may steadily boost detection rates and decrease false positives. Figure 4 shows the flow diagram 
of the research. Self-training algorithms must carefully pick confidence predictions and avoid error 
propagation. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Process Flow Diagram 

 
Another study [49] examined how Smart City self-training improves traffic flow anomaly 

identification. Class imbalance and uncertainty estimation must be addressed for its implementation to 
succeed despite its numerous advantages. The author utilized self-training to healthcare data for sickness 
diagnosis to illustrate how unlabeled patient information might increase diagnostic accuracy [49]. Model 
resilience and self-labelled example trustworthiness in ever-changing healthcare environments are currently 
being studied [49]. 

Co-training uses several data viewpoints to train classifiers repeatedly in semi-supervised learning. 
Labeled examples are shared across views to improve model performance. Through co-training in the Internet 
of Things security, research [50] demonstrated that supervised and unsupervised learning may improve 
detection rates. Their study highlighted the benefits of co-training in complementary data sources. However, 
classifier diversity and viewpoint selection must be addressed. 

Research [51] also performed network intrusion detection in Smart Cities, showing how co-training 
with many data modalities improves detection accuracy. Despite its value, view dependency and limited 
unlabeled data availability must be addressed for widespread adoption. The author also investigated co-
training in industrial IoT contexts for production process fault identification, showing that the diversity of 
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sensor data may increase predictive maintenance abilities [52]. Scalability and model interpretability in large-
scale industrial environments need further study.  

3.4 Deep Learning Algorithms 
Deep learning algorithms, which mimic the human brain, have transformed computer vision, pattern 

recognition, and natural language processing. Deep learning can extract precise patterns and features from 
complex datasets to enhance intrusion detection systems (IDS) in cybersecurity. 

Convolutional neural networks (CNNs) deep neural networks are good in image classification, 
object identification, and anomaly detection. In intrusion detection systems, research [53] found CNNs better 
at detecting cyberattacks and network anomalies. They showed that convolutional neural networks (CNNs) 
may automatically learn discriminative features from unprocessed network traffic data to increase detection 
accuracy and reduce the requirement for feature engineers [53]. Computational complexity and the necessity 
for large, labelled datasets may restrict CNN-based intrusion detection system scalability in resource-
constrained environments. 

Just like that, another research [54] proposed a deep learning-based smart city identification system. 
Convolutional neural networks (CNNs) analyze network traffic to detect suspicious activities. CNNs may 
identify breaches and enhance urban network security, they found. Despite promising results, convolutional 
neural network (CNN)-based intrusion detection systems still suffer adversarial attacks and model 
interpretability issues.  

By researching IoT anomaly detection using convolutional neural networks (CNNs), researchers 
[55] showed how CNNs can automatically extract meaningful characteristics from sensor data streams. They 
showed that CNNs can detect slight deviations from the norm, which might help identify and reduce hazards. 
Concept drift and data heterogeneity may affect the long-term dependability of convolutional neural network 
(CNN) anomaly detection systems. 

Recurrent Neural Networks (RNNs) employ feedback loops to evaluate sequential input and record 
contextual and temporal relationships. Researcher [56] constructed an RNN-based intrusion detection system 
to manage metropolitan IoT device traffic to show their usefulness in smart city settings. Figure 5 shows a 
conceptual map of the study. Their research showed that RNNs can reflect complex temporal correlations in 
network traffic data by enhancing intrusion detection accuracy. However, long training times and fading 
gradients may render RNN-based IDS ineffective in practice.  

 
 

 

 

 

 

 

 

Figure 5: Conceptual map [56] 

Another research [57] showed how recurrent models may improve threat detection by collecting 
sequential patterns in network data in their research on RNNs and IoT security. Their study highlighted RNNs' 
time-series data handling and cyber risk detection capabilities. The generalization performance of RNN-based 
intrusion detection systems may be affected by model overfitting and data sparsity. 

Autoencoders are unsupervised learning algorithms that encode input data into a lower-dimensional 
latent space and reconstruct it to develop efficient representations. On such study [58] showed how 
autoencoders can capture data distributions and uncover strange anomaly detection patterns for IoT intrusion 
detection systems. Their results showed that autoencoders may detect new cyber dangers and reduce false 
positives. Hyperparameter tinkering and model interpretability may hinder autoencoder-based IDS uptake. 



ISSN: 2583 5343  Int. J. of IT, Res. & App, Vol. 3, No. 4, Nov 2024: 01-16 
 

 

 
Zafar Iqbal, Ahthasham Sajid, Muhammad Nauman Zakki, Adeel Zafar, Arshad Mehmood, (2024). Role 
of Machine and Deep Learning Algorithms in Secure Intrusion Detection Systems (IDS) for IOT & Smart 
Cities, 3(4), 01-16. 

 

9 

Researchers [59] provide a review of an autoencoder-based anomaly detection system for Smart 
Cities using unsupervised learning. This framework detects network irregularities and security vulnerabilities. 
Their study showed that autoencoders can learn compact representations of network traffic data to improve 
urban anomaly detection. However, further study is required to address concerns regarding autoencoder-based 
intrusion detection systems' susceptibility to malicious attacks and data disruptions. 

Another study [60] showed how autoencoders could detect tiny changes in IoT network behaviour 
in real-time for intrusion detection. Their work highlighted the benefits of unsupervised learning for IoT 
security against emerging cyber threats. Autoencoder-based IDS may not work for large-scale IoT 
deployments owing to computational expense and model scalability. 

 
3.5 Implementing Challenges and likely Solutions 

Table 2 critically reviews and summarizes the challenges posed by Machine learning algorithms in 
IDS for IoT and Smart Cities as discussed by various authors [61-66], along with the restrictions those 
challenges pose and solutions as described by authors [67-69] for machine learning-based intrusion detection 
systems (IDS) for the Internet of Things (IoT) and smart cities. Each difficulty level and machine learning 
method restrictions are accurately characterized. Additionally, the recommended solutions are expanded to 
provide information on how to overcome these limits and maximize intrusion detection system deployment 
in Smart City and Internet of Things contexts. 

 
 

Table 2: Challenges and Existing Solutions 

Challenge Name Machine Learning Algorithms Limitations Identified Likely Solutions 

Technical 
challenges in 
deploying machine 
learning-based IDS in 
IoT [61-62] 

 

Decision Trees 
Overfitting may lead to 

inconsistent performance 
across different contexts. 

Regularization techniques 
(e.g., pruning) can mitigate 
overfitting and enhance 
generalization [67]. 

Support Vector Machines 
(SVMs) 

Performance may be 
sensitive to kernel settings. 

Parameter optimization 
methods can fine-tune kernel 
settings for improved 
performance [67]. 

Neural Networks 
Resource-intensive 

nature may pose challenges 
in processing and scalability. 

Distributed computing 
frameworks and optimization of 
neural network architectures can 
alleviate computational burdens 
and enhance scalability [67]. 

Random Forests 
Computational 

complexity may limit 
scalability, particularly in 
large-scale deployments. 

Optimization of ensemble 
learning techniques and parallel 
processing can enhance 
scalability and efficiency [68]. 

K-means Clustering 
Challenges with high-

dimensional data and 
selection of optimal cluster 
number. 

Advanced clustering 
algorithms and dimensionality 
reduction techniques can 
address these challenges [68]. 

Anomaly Detection 
High false positive rates 

may increase operational 
costs and impact system 
efficiency. 

Refinement of anomaly 
detection algorithms and 
adaptive thresholding can 
mitigate false positives and 
improve detection accuracy 
[68]. 

PCA (Principal 
Component Analysis) 

Reduced discrimination 
and data loss in complex 
networks. 

Advanced PCA variants and 
feature engineering methods can 
improve discrimination and 
preserve information [68]. 
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Security and 
privacy concerns [63-
64] 

Self-training 
Error propagation and 

model reliability issues in 
dynamic environments. 

 

Robust confidence 
estimation mechanisms and 
continuous model retraining can 
enhance model reliability and 
adaptability [69]. 

Co-training 
Dependence on data 

diversity and limited 
availability of unlabeled data. 

Active learning strategies 
and data augmentation 
techniques can enrich labelled 
data and improve model 
performance [69]. 

Autoencoders 

Vulnerability to 
adversarial attacks, 
hyperparameter tuning 
challenges, and model 
interpretability issues. 

Adversarial training, 
interpretability enhancements, 
and robustness validation 
techniques can address these 
concerns [69]. 

 

 

Scalability 
challenges [65-66] 

Deep Learning 
Algorithms (e.g., CNNs, 
RNNs) 

Increased computational 
and memory requirements 
hinder scalability in resource-
constrained environments. 

Optimization of model 
architectures, parameter tuning, 
and utilization of distributed 
computing frameworks can 
enhance scalability [69]. 

Ensemble Learning (e.g., 
Random Forests) 

Complexity in integrating 
multiple models and 
managing ensemble diversity 
affects scalability and 
deployment. 

Streamlining ensemble 
methods, model selection 
strategies, and efficient 
parameter tuning can improve 
scalability and efficiency [69]. 

Real-time Processing 

Processing time 
constraints and latency issues 
may impact the real-time 
effectiveness of IDS in 
dynamic environments. 

Implementing optimized 
algorithms, hardware 
acceleration, and parallel 
processing can enhance real-
time performance [69]. 

 
3.6 Emerging Future Trends in Machine Learning in IDS for IoT and Smart Farming 

Machine learning can make the Internet of Things (IoT) more secure and smart farming more 
advanced. Various researchers show that these trends will enhance agricultural firms' resource utilization and 
decision-making while reducing new risks. 

Federated learning transforms collaborative model training across distributed IoT devices and 
agricultural sensors. Federated learning examined [70] shows how devices may learn from local data while 
maintaining user privacy and enhancing IoT security. The three-tier architecture of which is shown in Figure 
6. This technology allows smart farming's agricultural sensors to "learn" from one other and adapt to their 
environment, enabling more informed, tailored field peripheral choices. 
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Figure 6: Three-tier architecture [70] 

Smart farming and IoT security applications may benefit from on-device learning and edge 
computing for real-time responsiveness and low latency. Another study [71] examines the benefits of 
applying modest machine-learning models to IoT devices and agricultural sensors. Edge computing allows 
localized data processing and analysis, allowing IoT devices to detect security threats and irregularities 
automatically. It permits timely, context-aware agricultural actions. 

Interpretability and explainable AI (XAI) may make machine learning models more visible and 
understandable, encouraging collaboration and confidence in smart farming and IoT security. Researchers 
[72-73] show how security analysts and farmers need XAI to comprehend model decisions. Interpretable 
machine learning models let stakeholders find and solve IoT security risks rapidly. Transparent AI 
technologies help farmers make wise agricultural choices by providing crop health, soil, and environmental 
data. 

Securing IoT and Smart Farming from Advanced Cyberattacks Needs Strong Adversarial Machine 
Learning Defenses. One such study [74] innovative defensive approaches, focusing on robust model training 
and adversarial example identification. Adversarial defensive methods assist intrusion detection systems in 
resisting manipulation and evasion, keeping IoT networks safe. These protections prevent agricultural 
systems from harmful attacks that threaten data integrity or decision-making, keeping smart farming 
technology trustworthy and successful. 

Using Pre-Existing Knowledge and Domain Adaptation: These two methodologies are essential for 
adapting machine learning models to IoT and agriculture. Research [75] transfers learning's capacity to 
generalize models and transfer knowledge from related fields for IoT security. Smart farming uses domain 
adaptation techniques to incorporate diverse data sources and environmental factors smoothly, making 
machine learning models more resilient and adaptable to a variety of farming situations and making 
knowledge transfer easier. 

 
4. CONCLUSION 

In conclusion, this review paper explores machine learning methods in IDS for the IoT and Smart 
Cities. It illuminates current research, challenges, and future directions. A thorough literature study found 
that machine learning can improve IoT smart farming and security. Researchers have used supervised, 
unsupervised, and semi-supervised learning approaches to recognize intrusions and irregularities, each having 
pros and cons. Transfer learning, adversarial machine learning defence, explainable AI, federated learning, 
edge computing, and deep learning architectures may help smart farming and IoT applications maximize 
resource consumption and manage growing dangers. Additional research is needed to solve data privacy, 
model interpretability, and scalability challenges. The paper suggests that interdisciplinary collaboration and 
innovation are essential for smart city IoT ecosystem security and agricultural sustainability. 
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