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 In this paper we develop and analyze an inventory model assumption that 
deterioration rate follows Exponential distributions with power dependent 
demand. With shortage and without shortage both cases have been taken care 
of in developing the inventory models. Shortages are fully backlogged 
whenever they are allowed. Through numerical examples the results are 
illustrated. The sensitivity analysis for the model has been performed to study 
the effect changes of the values of the parameters associated with the model. 
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I. INTRODUCTION  

The influence and maintenance inventories for deteriorating items with shortages have received 
much attention of several researchers in the recent years because most of the physical goods deteriorate over 
period of time. In real life, many of the items are either damaged or decayed or affected by some other factors 
and is not in a perfect condition to satisfy the demand. Food items, drugs, pharmaceuticals, radioactive 
substances are examples of such items where deterioration can take place during the normal storage period 
of the commodity and consequently this loss must be taken into account when analyzing the system. So decay 
or deterioration of physical goods in stock is a very realistic feature and researchers felt the necessity to use 
this factor into consideration in developing inventory models. 

Ghare and Schrader (1963) who developed an economic order quantity model with constant rate of 
decay. An order-level inventory model for a system with constant rate of deterioration have proposed by Shah 
and Jaiswal (1977), Aggarwal [1978], Dave and Patel [1981]. Inventory models with a time dependent rate 
of deterioration were developed by Covert and Philip [1973], Mishra [1973] and Deb and Chaudhuri [1986]. 
Some of the significant recent work in this area have been done by Chung and Ting [1993], Fujiwara [1993], 
Hariga [1996], Hariga and Benkherouf[1994], Wee [1995], Jalan et al. [1999], Su, et al. [1996], Chakraborty 
and Chaudhuri [1997], Giri and Chaudhuri[1997], Chakraborty, et al. [1997] and Jalan and Chaudhuri, 
[1999],etc.  
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At the beginning, demand rate were assumed to be constant which is in general likely to be time 
dependent and stock dependent. Begum et al. [2010] have developed economic lot size model for price-
dependent demand. Inventory model for ameliorating items for price dependent demand rate was proposed 
by Mondal et.al [2003], with the motivation of C. K. Tripathy., et al. [2010] and Sushil Kumar., et al. [2013] 
we developed EOQ models for Weibull deteriorating items and price dependent demand. 

 In this paper, we have developed generalized EOQ model for deteriorating items where 
deterioration rate follows two-parameter Weibull and demand rate is considered to be a function of selling 
price. For the model where shortages are allowed they are completely backlogged. Here we have considered 
both the case of with shortage and without shortage in developing the model. Using differential equations, 
the profit rate function are obtained. By maximizing the profit rate function, the optimal production schedule 
and optimal production quantity are derived. Through numerical illustration the sensitivity analysis is carried. 
This model also includes some of the earlier models as particular cases for particular or limiting values of the 
parameters. 

II. ASSUMPTIONS AND NOTATIONS 
  The following assumptions are made for developing the model: 

a) The demand rare is a function of selling price which is 𝑓(𝑠) = (𝑎 − 𝑏𝑠) > 0 
b)  Shortages, whenever allowed are completely backlogged.  
c) The deterioration rate is proportional to time. 
d) Replenishment is instantaneous and lead time is zero.  
e) T is the length of the cycle.  
f) Q: Ordering quantity in one cycle 
g) A: Ordering cost 
h) C: Cost per unit 
i) h: Inventory holding cost per unit per unit time 
j) p: Shortages cost per unit per unit time 
k) s: Selling price per unit and   
l) The deterioration of units follows the two parameter Weibull distribution with probability 

density function 	𝑓(𝑡) = 𝛼𝛽𝑡!"#𝑒"$%!, 			0 < 𝛼 < 1 is scale parameter and 𝛽 > 0 is shape 
parameter and 𝑡 > 0. Therefore, the instantaneous rate of replenishment is 𝛼𝛽𝑡!"# 

m) During time t1, inventory is depleted due to deterioration and demand of the item. At time t1 
the inventory becomes zero and shortages start occurring. 

 

III. MATHEMATICAL FORMULATION OF THE MODEL 
Let I(t) be the inventory level at time ‘t’ (0 ≤ 𝑡 ≤ 𝑇). The differential equations governing the system in the 

cycle time [0, T] are 
&
&%
𝐼(𝑡) + 𝛼𝛽𝑡!"#𝐼(𝑡) = 	−(𝑎 − 𝑏𝑠)            0 ≤ 𝑡 ≤ 𝑡#              (1) 

&
&%
𝐼(𝑡) = 	−(𝑎 − 𝑏𝑠)                𝑡# ≤ 𝑡 ≤ 𝑇       (2) 

With I(t) = 0 at t = t1 

Solving the equations (1) and (2) and neglecting higher powers of α, we get  
𝐼(𝑡) = 	 ((")*)

,"#!
6(𝑡# − 𝑡) +

$
!-#

(𝑡#
!-# − 𝑡!-#)7 0 ≤ 𝑡 ≤ 𝑡#     (3) 

𝐼(𝑡) = 	 (𝑎 − 𝑏𝑠)(𝑡 −	𝑡#)      𝑡# ≤ 𝑡 ≤ 𝑇                (4) 
Stock loss due to deterioration in the cycle of length T is 

𝐿(𝑇) = (𝑎 − 𝑏𝑠)9 𝑒$%!𝑑𝑡 − (𝑎 − 𝑏𝑠)9 𝑑𝑡

%$

.

	

%$

.

	 

= (𝑎 − 𝑏𝑠) ;$%$
!%$

!-#
<                           (5) 

Ordering quantity Q in the cycle of length T is 

𝑄 = 𝐿(𝑇) + 9(𝑎 − 𝑏𝑠)𝑑𝑡
%

.
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= (𝑎 − 𝑏𝑠) ;$%$
!%$

!-#
< + (𝑎 − 𝑏𝑠)𝑇                                               (6) 

Holding cost is obtained by substituting the equations (3) and (4), we get 

𝐻 = ℎ@9 𝐼(𝑡)𝑑𝑡

%$

.

A = ℎ	 B9 C
(𝑎 − 𝑏𝑠)
𝑒$%!

;(𝑡# − 𝑡) +
𝛼

𝛽 + 1 (𝑡#
!-# − 𝑡!-#)<D

%$

.

𝑑𝑡 

Neglecting higher powers of α, we get 

𝐻 = ℎ(𝑎 − 𝑏𝑠) CE𝑡# −	
𝛼𝑡#

!-#

𝛽 + 1F	E𝑡# +	
𝛼𝑡#

!-#

𝛽 + 1F 

− 	B9 𝑡𝑒"$%!𝑑𝑡 +
𝛼

𝛽 + 1	 9 𝑡#
!-#𝑒"$%!𝑑𝑡

/

%$

%$

.

GH																																																																																																										(7) 

Shortage cost during the cycle is  

𝑆 = 	− 9𝐼(𝑡)𝑑𝑡
/

%$

=	− 9(𝑎 − 𝑏𝑠)(𝑡# − 𝑡)𝑑𝑡
/

%$

				

= 	
1
2
(𝑎 − 𝑏𝑠)(𝑇 − 𝑡#)0																																																																																																													(8) 

 
Let 𝑃(𝑇, 𝑡#, 𝑠) be the profit rate function. Since the profit rate function is the total revenue per unit minus 
total cost per unit time, we have 
𝑃(𝑇, 𝑡#, 𝑠) = 𝑠(𝑎 − 𝑏𝑠) −	 #

/
(𝐴 + 𝐶𝑄 + 𝐻 + 	𝜋𝑆)          (9) 

Substituting the values of equations (6), (7) and (8) in equation (9), one can get the profit rate function as 

𝑃(𝑇, 𝑡#, 𝑠) = 𝑠(𝑎 − 𝑏𝑠) −
1
𝑇 C𝐴 + 𝐶 C

(𝑎 − 𝑏𝑠)
𝛼𝑡#

!-#

𝛽 + 1 +	
(𝑎 − 𝑏𝑠)𝑇D	 

+ℎ(𝑎 − 𝑏𝑠) CE𝑡# −	
𝛼𝑡#

!-#

𝛽 + 1F	E𝑡# +	
𝛼𝑡#

!-#

𝛽 + 1F − 	B9 𝑡𝑒"$%!𝑑𝑡 +
𝛼

𝛽 + 1	 9 𝑡#
!-#𝑒"$%!𝑑𝑡

/

%$

%$

.

GH 

+ 1
0
(𝑎 − 𝑏𝑠)(𝑇 − 𝑡#)07                                                                                  (10) 

Let 𝑡# = 	𝛾𝑇	, 0 < 𝛾 < 1   
Hence we get the profit function 

𝑃(𝑇, 𝑠) = 𝑠(𝑎 − 𝑏𝑠) −
1
𝑇 S𝐴 + 𝐶

(𝑎 − 𝑏𝑠) S
𝛼𝛾!-#𝑇!-#

𝛽 + 1 + 	𝑇T	 

+ℎ(𝑎 − 𝑏𝑠) CE(𝛾𝑇)0 −	U
𝛼𝛾!-#

𝛽 + 1V
0

𝑇0!-0F − B9 𝑡𝑒"$%!𝑑𝑡 +
𝛼

𝛽 + 1 9𝛾
!-#𝑇!-#𝑒"$%!𝑑𝑡

/

2/

2/

.

GH 

+ 1
0
(𝑎 − 𝑏𝑠)(𝑇 − 𝛾𝑇)07                    (11) 

Our objective is to maximize the profit function	𝑃(𝑇, 𝑠). The necessary conditions for maximizing the profit 
function are 

34(/,*)
3/

= 0	and 34(/,*)
3*

= 0  
We get  

(𝑎 − 𝑏𝑠) S
𝐶𝛼𝛽𝛾!-#𝑇!"#

𝛽 + 1 + h SUγ −
α0γ06-0(2β + 1)T06

(β + 1)0 V 

−B−
1
T0 B9 𝑡𝑒"$%!𝑑𝑡 +

𝛼
𝛽 + 1 9𝛾

!-#𝑇!-#𝑒"$%!𝑑𝑡
/

2/

2/

.

G 

	+
1
T
∂
∂T B9 𝑡𝑒"$%!𝑑𝑡 +

𝛼
𝛽 + 1 9𝛾

!-#𝑇!-#𝑒"$%!𝑑𝑡
/

2/

2/

.

GG +
π
2 (1 − γ)

07 = 0																											(12) 
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   and              

(𝑎 − 𝑏𝑠) +
𝑏
𝑇 C𝐶 S

𝛼𝛾!-#𝑇!-#

𝛽 + 1 + 	𝑇T + ℎ CE(𝛾𝑇)0 −	U
𝛼𝛾!-#

𝛽 + 1V
0

𝑇0!-0F 

−^9 𝑡𝑒"$%!𝑑𝑡 +
𝛼

𝛽 + 1 9𝛾
!-#𝑇!-#𝑒"$%!𝑑𝑡

/

2/

2/

.

GH +
𝜋
2 (1 − γ)

0H = 0																																					(13) 

Using the software Mat cad 15, we obtain the optimal policies of the inventory system under study. To find 
the optimal values of T and s, we obtain the first order partial derivatives of 𝑃(𝑇, 𝑠) given in equation (11) 
with respect to T and s and equate them to zero. The condition for maximization of 𝑃(𝑇, 𝑠)	is 

𝐷 = aa

𝜕0𝑃(𝑇, 𝑠)
𝜕𝑇0

𝜕0𝑃(𝑇, 𝑠)
𝜕𝑇𝜕𝑠

𝜕0𝑃(𝑇, 𝑠)
𝜕𝑇𝜕𝑠

𝜕0𝑃(𝑇, 𝑠)
𝜕𝑠0

aa < 0 

IV. NUMERICAL EXAMPLE 
Case – I (with shortages) 
Let A = 500, C = 10, h = 2, π = 0.5, α = 10, β = 0.5, γ = 0.4, a = 100, b = 2 
Based on above input data and Using the software Matcad 6.0, we calculate the optimal value of 𝑡#∗  =   1.1484, 
	𝑇∗ = 2.871, s* = 34.976, Q* = 62.627, 𝑃∗(𝑇, 𝑠) = 310.964 
Case – II (without shortages) 
Based on above input data and Using the software Matcad 6.0, we calculate the optimal value of 𝑡#∗  =   0.8084, 
	𝑇∗ = 2.021, s* = 18.39, Q* = 120.43, 𝑃∗(𝑇, 𝑠) = 166.199 
 
V. SENSITIVITY ANALYSIS  

To study the effects of changes of the parameters on the optimal profit derived by proposed method, 
a sensitivity analysis is performed considering the numerical example given above. Sensitivity analysis is 
performed by changing (increasing or decreasing) the parameters by 10%and 20% and taking one parameter 
at a time, keeping the remaining parameters at their original values. The results are shown in Table-1 and 
Table-2 for with shortage case and without shortage case respectively. The relationship between the 
parameters and the optimal values are shown in Figure 1 and 2. 

Table – 1 
Sensitivity analysis of the model (with shortages) 

Variation 
Parameters 

 
Optimal 
Policies 

Change in parameters 

-20% -10% 0% 10% 20% 
a t1* 1.285 1.238 1.148 1.020 0.818 
 T* 3.214 3.097 2.871 2.551 2.045 
 s* 31.073 32.883 34.976 38.757 41.65 
 Q* 35.161 52.005 62.627 78.614 138.202 
  𝑃∗(𝑇, 𝑠) 143.527 174.373 310.964 406.978 472.826 
b t1* 2.076 1.605 1.148 0.960 0.943 
 T* 5.192 4.014 2.871 2.400 2.359 
 s* 24.868 29.573 34.976 38.314 46.486 
 Q* 99.519 88.286 62.627 40.418 54.076 
  𝑃∗(𝑇, 𝑠) 428.809 411.187 310.964 264.305 172.377 

α t1* 0.867 0.867 1.148 1.375 2.067 
 T* 2.168 2.169 2.871 3.438 5.169 
 s* 30.119 30.615 34.976 38.451 40.507 
 Q* 67.11 65.225 62.627 51.286 50.349 
  𝑃∗(𝑇, 𝑠) 350.938 345.726 310.964 215.199 171.88 

β t1* 0.804 0.842 1.148 1.686 1.696 
 T* 2.012 2.105 2.871 4.215 4.241 
 s* 30.134 30.168 34.976 37.136 37.152 
 Q* 66.023 65.719 62.627 56.506 50.485 
  𝑃∗(𝑇, 𝑠) 343.059 343.344 310.964 291.625 282.324 
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Fig 1: Relationship between parameters and optimal values with shortages 

We study from above Table-1 reveals the following 
i) Increase in the values of either of the parameters a, will result in increase of T*, s* and Q* but 

decrease t1*, 𝑃∗(𝑇, 𝑠). 
ii) Decrease in the values of either of the parameters a, will result in decrease of T*, s* and Q* but 

increase t1*, 𝑃∗(𝑇, 𝑠). 
iii) Increase in the values of either of the parameters b, will result in increase of s* but decrease t1*, 

T*, Q* and  𝑃∗(𝑇, 𝑠). 
iv) Decrease in the values of either of the parameters b, will result in decrease of t1* and s* but 

increase T*, Q* and 𝑃∗(𝑇, 𝑠). 
v) Increase in the values of either of the parameters α, will result in increase of  t1* T* and s* but 

decrease Q* and 𝑃∗(𝑇, 𝑠). 
vi) Decrease in the values of either of the parameters α, will result in decrease of t1* T* and s* but 

increase Q* and 𝑃∗(𝑇, 𝑠). 
vii) Increase in the values of either of the parameters β, will result in increase of  t1* T* and s* but 

decrease Q* and 𝑃∗(𝑇, 𝑠). 
viii) Decrease in the values of either of the parameters β, will result in decrease of t1* T* and s* but 

increase Q* and 𝑃∗(𝑇, 𝑠). 
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Table – 2 
Sensitivity analysis of the model (without shortages) 

Variation 
Parameters 

 
Optimal 
Policies 

Change in parameters 

-20% -10% 0% 10% 20% 
a t1* 0.770 0.829 1.501 1.504 1.542 
 T* 1.541 1.658 3.002 3.008 3.084 
 s* 17.675 17.814 18.107 18.815 19.411 
 Q* 130.339 160.007 194.469 194.575 197.932 
  𝑃∗(𝑇, 𝑠) 171.313 176.242 221.659 261.284 305.507 

b t1* 1.02 1.36 1.501 1.487 1.554 
 T* 2.04 2.72 3.002 2.975 3.109 
 s* 17.731 17.788 18.107 19.139 19.628 
 Q* 130.015 164.106 194.469 197.072 198.043 
  𝑃∗(𝑇, 𝑠) 182.2 184.828 221.659 192.267 182.685 

α t1* 1.538 1.530 1.501 1.411 1.326 
 T* 3.076 3.061 3.002 2.823 2.653 
 s* 18.039 18.083 18.107 18.113 18.149 
 Q* 198.7 198.76 194.469 181.835 169.794 
  𝑃∗(𝑇, 𝑠) 227.355 226.653 221.659 208.438 195.789 

β t1* 1.256 1.525 1.501 1.298 1.083 
 T* 2.512 3.043 3.002 2.597 2.167 
 s* 18.183 18.11 18.107 18.076 18.289 
 Q* 161.089 167.699 194.469 165.891 134.723 
  𝑃∗(𝑇, 𝑠) 289.195 223.586 221.659 194.391 164.166 
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We study from above Table-2 reveals the following 

i) Increase in the values of either of the parameters a, will result in increase of t1*, T*, s*, Q* and 
𝑃∗(𝑇, 𝑠). 

ii) Decrease in the values of either of the parameters a, will result in increase of t1*, T*, s*, Q* and 
𝑃∗(𝑇, 𝑠). 

iii) Increase in the values of either of the parameters b, will result in increase of t1*, T*, s*, Q* and 
𝑃∗(𝑇, 𝑠). 

iv) Decrease in the values of either of the parameters b, will result in increase of t1*, T*, s*, Q* and 
𝑃∗(𝑇, 𝑠). 

v) Increase in the values of either of the parameters α, will result in decrease of t1*, T*, s*, Q* and 
𝑃∗(𝑇, 𝑠). 

vi) Decrease in the values of either of the parameters α, will result in increase of t1*, T*, s*, Q* and 
𝑃∗(𝑇, 𝑠). 

vii) Increase in the values of either of the parameters β, will result in decrease of t1*, T*, s*, Q* and 
𝑃∗(𝑇, 𝑠). 

viii) Decrease in the values of either of the parameters β, will result in increase of t1*, T*, s*, Q* and 
𝑃∗(𝑇, 𝑠). 

 
VI. CONCLUSION 

In this paper economic production quantity models are developed and analyzed for a single 
commodity under consideration. It is possible to develop EPQ models for multiple commodities using random 
production (variable rate of production). Throughout the thesis it is assumed that the money value remain 
constant over the period of time i.e. the inflation has no influence on the models. It is also possible to develop 
and analyze the EPQ models developed in this paper with inflation (time values of money) which require 
further investigation. 
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